Fractures & Trauma

A bone fracture is a medical condition in which a bone is cracked or broken. It is a break in the continuity of the bone. While many fractures are the result of high force impact or stress, bone fracture can also occur as a result of certain medical conditions that weaken the bones, such as osteoporosis.

Fractures: Types & Treatment

The word “Fracture” implies to broken bone. A bone may get fractured completely or partially and it is caused commonly from trauma due to fall, motor vehicle accident or sports. Thinning of the bone due to osteoporosis in the elderly can cause the bone to break easily. Overuse injuries are common cause of stress fractures in athletes.

Types of fractures include:

  • Simple fractures in which the fractured pieces of bone are well aligned and stable.
  • Unstable fractures are those in which fragments of the broken bone are misaligned and displaced.
  • Open (compound) fractures are severe fractures in which the broken bones cut through the skin. This type of fracture is more prone to infection and requires immediate medical attention.
  • Greenstick fractures: This is a unique fracture in children that involves bending of one side of the bone without any break in the bone.

Fracture Healing

Our body reacts to a fracture by protecting the injured area with a blood clot and callus or fibrous tissue. Bone cells begin forming on the either side of the fracture line. These cells grow towards each other and thus close the fracture.

Medical Therapy

The objective of early fracture management is to control bleeding, prevent ischemic injury (bone death) and to remove sources of infection such as foreign bodies and dead tissues. The next step in fracture management is the reduction of the fracture and its maintenance. It is important to ensure that the involved part of the body returns to its function after fracture heals. To achieve this, maintenance of fracture reduction with immobilization technique is done by either non-operative or surgical method.

Non-operative (closed) therapy comprises of casting and traction (skin and skeletal traction).

  • Casting: Closed reduction is done for any fracture that is displaced, shortened, or angulated. Splints and casts made up of fiberglass or plaster of Paris material are used to immobilize the limb.
  • Traction: Traction method is used for the management of fractures and dislocations that cannot be treated by casting. There are two methods of traction namely, skin traction and skeletal traction.

Skin traction involves attachment of traction tapes to the skin of the limb segment below the fracture. In skeletal traction, a pin is inserted through the bone distal to the fracture. Weights will be applied to this pin, and the patient is placed in an apparatus that facilitates traction. This method is most commonly used for fractures of the thighbone.

Surgical Therapy

  • Open Reduction and Internal Fixation (ORIF): This is a surgical procedure in which the fracture site is adequately exposed and reduction of fracture is done. Internal fixation is done with devices such as Kirschner wires, plates and screws, and intramedullary nails.
  • External fixation: External fixation is a procedure in which the fracture stabilization is done at a distance from the site of fracture. It helps to maintain bone length and alignment without casting.

External fixation is performed in the following conditions:

  • Open fractures with soft-tissue involvement
  • Burns and soft tissue injuries
  • Pelvic fractures
  • Comminuted and unstable fractures
  • Fractures having bony deficits
  • Limb-lengthening procedures
  • Fractures with infection or non-union

Rehabilitation

Fractures may take several weeks to months to heal completely. You should limit your activities even after the removal of cast or brace so that the bone become solid enough to bear the stress. Rehabilitation program involves exercises and gradual increase in activity levels until the process of healing is complete.

Growth Plate Fractures

Growth plates, also called the epiphyseal plate or physis, are the areas of growing cartilaginous tissue found at the ends of the long bones in children. These growth plates determine the length and shape of the mature bone. The growth plates are more susceptible to damage from trauma because they are not as hard as bones.

Growth plate injuries commonly occur in growing children and teenagers. In children, severe injury to the joint may result in a growth plate fracture rather than a ligament injury. Any injury that can cause a sprain in an adult can cause a growth plate fracture in a child.

Growth plate fractures are more common in boys than girls because the plates develop into mature bone faster in girls. Growth plate fractures commonly occur at the wrist,, long bones of the forearm (radius) and fingers (phalanges), legs ( tibia and fibula), foot, ankle or hip during sports activities such as football, basketball and gymnastics.

Types of growth plate fractures

Growth plate fractures can be classified into five categories based on the type of damage caused.

  • Type I – Fracture through the growth plate

    The epiphysis is separated from the metaphysis with the growth plate remaining attached to the epiphysis. The epiphysis is the rounded end of the long bones below the growth plate and the metaphysis is the wider part at the end of the long bones above the growth plate.

  • Type II – Fracture through the growth plate and metaphysis

    This type is the most common type of growth plate fracture. The growth plate and metaphysis are fractured without involving the epiphysis.

  • Type III – Fracture through the growth plate and epiphysis

    In this type of injury, the fracture runs through the epiphysis and separates the epiphysis and growth plate from the metaphysis. It usually occurs in the tibia, one of the long bone of the lower leg.

  • Type IV – Fracture through growth plate, metaphysis, and epiphysis:

    Type IV is when the fracture goes through the epiphysis and growth plate, and into the metaphysis. This type often occurs in the upper arm near the elbow joint.

  • Type V – Compression fracture through growth plate:

    This type of fracture is a rare condition where the end of the bone gets crushed and the growth plate is compressed. It can occur at the knee or ankle joint.

Causes

Growth plate injuries are caused by accidental falls or blows to the limbs during sports activities such as gymnastics, baseball, or running. They may also result from overuse of tendons and certain bone disorders such as infection that can affect the normal growth and development of the bone. The other possible causes which can lead to growth plate injuries are:

  • Child abuse or neglect: Growth plate fractures are one of the most common fractures that occur in abused or neglected children.
  • Exposure to intense cold (frostbite): Extremely cold climatic conditions can cause damage to the growth plates resulting in short fingers and destruction of the joint cartilage.
  • Chemotherapy and medications: Chemotherapy to treat cancer in children and continuous use of steroids for arthritis may affect bone growth.
  • Nervous system disorders: Children with disorders of the nerves may have sensory deficits and muscular imbalances that can cause them to lose their balance and fall.
  • Genetic disorders: Gene mutations may result in poorly formed or malfunctioning growth plates which are vulnerable to fracture.
  • Metabolic diseases: Diseases such as kidney failure and hormonal disturbances affect the proper functioning of the growth plates and increase susceptibility to fractures.

Signs and Symptoms

Signs and symptoms of a growth plate injury include:

  • Inability to move or put pressure on the injured extremity
  • Severe pain or discomfort that prevents the use of an arm or leg
  • Inability to continue playing after a sudden injury because of pain
  • Persistent pain from a previous injury
  • Malformation of the legs or arms as the joint area near the end of the fractured bone may swell

In children, fractures heal faster. If a growth plate fracture is left untreated it may heal improperly causing the bone to become shorter and abnormally shaped.

Diagnosis

Your doctor will evaluate the condition by asking you about the injury and performing a physical examination of the child.

X-rays may be taken to determine the type of fracture. Since the growth plates have not hardened and may not be visible, X-rays of the injured as well as the normal limb are often taken to look for differences in order to help determine the place of injury.

Other diagnostic tests your doctor may recommend include computed tomography (CT) scan or magnetic resonance imaging (MRI). These tests are helpful in detecting the type and extent of injury as it allows the doctor to see the growth plate and soft tissues.

Treatment

The treatment for growth plate injuries depends upon the type of fracture involved. In all cases, the treatment should begin as early as possible and include the following:

  • Immobilization: The injured limb is covered with a cast or a splint may be given to wear. The child will be advised to limit activities and avoid putting pressure on the injured limb.
  • Manipulation or surgery: If the fracture is displaced and the ends of the broken bones do not meet in proper position, then your doctor will unite the bone ends into correct position either manually (manipulation) or surgically. Sometimes, a screw or wire may be used to hold the growth plate in place. The bone is then immobilized with a cast to promote healing. The cast is removed once healing is complete
  • Physical therapy: Exercises such as strengthening and range-of-motion exercises should be started only after the fracture has healed. These are done to strengthen the muscles of the injured area and improve the movement of the joint. A physical therapist will design an appropriate exercise schedule for your child.
  • Long-term follow up: Periodic evaluations are needed to monitor the child’s growth. Evaluation includes X-rays of matching limbs at intervals of 3 to 6 months for at least 2 years.

Most growth plate fractures heal without any long term problems. Rarely, the bone may stop growing and become shorter than the other limb.

Nonunions

A fracture is a break in the bone that occurs when extreme force is applied. Treatment of fractures involves the joining of the broken bones either by immobilizing the area and allowing the bone to heal on its own, or surgically aligning the broken bones and stabilizing it with metal pins, rods or plates. Sometimes, the broken bone fails to re-join and heal even after treatment. This is called non-union. Non-union occurs when the broken bones do not get sufficient nutrition, blood supply or adequate stability (not immobilized enough) to heal. Non-union can be identified by pain after the initial fracture pain is relieved, swelling, tenderness, deformity and difficulty bearing weight.

When you present with these symptoms, your doctor may order imaging tests like X-rays, CT scans and MRI to confirm a diagnosis of non-union. The treatment of non-union fractures can be achieved by non-surgical or surgical procedures.

Non-surgical treatment: This method involves the use of a bone stimulator, a small device that produces ultrasonic or pulsed electromagnetic waves, which stimulates the healing process. You will be instructed to place the stimulator over the region of non-union for 20 minutes to a few hours every day.

Surgical treatment : The surgical method of treatment for non-union is aimed at:

  • Establishing stability: Metal rods, plates or screws are implanted to hold the broken bones above and below the fracture site. Support may be provided internally or externally.
  • Providing a healthy blood supply and soft tissue at the fracture site: Your doctor removes dead bone along with any poorly vascularized or scarred tissue from the site of fracture to encourage healing. Sometimes, healthy soft tissue along with its underlying blood vessels may be removed from another part of your body and transplanted at the fracture site to promote healing.
  • Stimulating a new healing response: Bone grafts may be used to provide fresh bone-forming cells and supportive cells to stimulate bone healing.

Stress Fractures

A stress fracture is described as a small crack in the bone which occurs from an overuse injury of a bone. It commonly develops in the weight bearing bones of the lower leg and foot. When the muscles of the foot are overworked or stressed, they are unable to absorb the stress and when this happens the muscles transfer the stress to the bone which results in stress fracture.

Stress fractures are caused by a rapid increase in the intensity of exercise. They can also be caused by impact on a hard surface, improper footwear, and increased physical activity. Athletes participating in certain sports such as basketball, tennis or gymnastics are at a greater risk of developing stress fractures. During these sports the repetitive stress of the foot strike on a hard surface causing trauma and muscle fatigue. An athlete with inadequate rest between workouts can also develop stress fracture.

Females are at a greater risk of developing stress fracture than males, and may be related to a condition referred to as “female athlete triad”. It is a combination of eating disorders, amenorrhea (irregular menstrual cycle), and osteoporosis (thinning of the bones). The risk of developing stress fracture increases in females if the bone weight decreases.

The most common symptom is pain in the foot which usually gets worse during exercises and decreases upon resting. Swelling, bruising, and tenderness may also occur at a specific point.

Your doctor will diagnosis the condition after discussing symptoms and risk factors and examines the foot and ankle. Some of the diagnostic tests such as X-ray, MRI scan or bone scan may be required to confirm the fracture.

Treatment

Stress fractures can be treated by non-surgical approach which includes rest and limiting the physical activities that involves foot and ankle. If children return too quickly to the activity that has caused stress fracture, it may lead to chronic problems such as harder-to-heal stress fractures.

Protective footwear may be recommended which helps to reduce stress on the foot. Your doctor may apply cast to the foot to immobilize the leg which also helps to remove the stress. Crutches may be used to prevent the weight of the foot until the stress fracture is healed completely.

Surgery may be required if the fracture is not healed completely by non-surgical treatment. Your doctor makes an incision on the foot and uses internal fixators such as wires, pins, or plates to attach the broken bones of the foot together until healing happens after which these fixators can be removed or may be permanently left inside the body.

Some of the following measures may help to prevent stress fractures:

  • Ensure to start any new sport activity slowly and progress gradually
  • Cross-training: You may use more than one exercise with the same intention to prevent injury. For example you may run on even days and ride a bike on odd days, instead of running every day to reduce the risk of injury from overuse. This limits the stress occurring on specific muscles as different activities use muscles in different ways
  • Ensure to maintain a healthy diet and include calcium and vitamin D-rich foods in your diet
  • Ensure that your child uses proper footwear or shoes for any sports activity and avoid using old or worn out shoes
  • If your child complains of pain and swelling then immediately stop the activities and make sure that your child rests for few days

Foot & Ankle

The foot and ankle in the human body work together to provide balance, stability, movement, and Propulsion.

This complex anatomy consists of:

  • 26 bones
  • 33 joints
  • Muscles
  • Tendons
  • Ligaments
  • Blood vessels, nerves, and soft tissue

Ankle Fractures

The ankle joint is composed of three bones: the tibia, fibula, and talus which are articulated together. The ends of the fibula and tibia (lower leg bones) form the inner and outer malleolus, which are the bony protrusions of the ankle joint that you can feel and see on either side of the ankle. The joint is protected by a fibrous membrane called a joint capsule, and filled with synovial fluid to enable smooth movement.

Ankle injuries are very common in athletes and in people performing physical work, often resulting in severe pain and impaired mobility. Pain after ankle injuries can either be from a torn ligament and is called ankle sprain or from a broken bone which is called ankle fracture. Ankle fracture is a painful condition where there is a break in one or more bones forming the ankle joint. The ankle joint is stabilized by different ligaments and other soft tissues, which may also be injured during an ankle fracture.

Causes

Ankle fractures occur from excessive rolling and twisting of the ankle, usually occurring from an accident or activities such as jumping or falling causing sudden stress to the joint.

Symptoms

With an ankle fracture, there is immediate swelling and pain around the ankle as well as impaired mobility. In some cases blood may accumulate around the joint, a condition called hemarthrosis. In cases of severe fracture, deformity around the ankle joint is clearly visible where bone may protrude through the skin.

Types of fractures

Ankle fractures are classified according to the location and type of ankle bone involved. The different types of ankle fractures are:

  • Lateral Malleolus fracture in which the lateral malleolus, the outer part of the ankle is fractured.
  • Medial Malleolus fracture in which the medial malleolus, the inner part of the ankle, is fractured.
  • Posterior Malleolus fracture in which the posterior malleolus, the bony hump of the tibia, is fractured.
  • Bimalleolar fractures in which both lateral and medial malleolus bones are fractured
  • Trimalleolar fractures in which all three lateral, medial, and posterior bones are fractured.
  • Syndesmotic injury, also called a high ankle sprain, is usually not a fracture, but can be treated as a fracture.

Diagnosis

The diagnosis of the ankle injury starts with a physical examination, followed by X-rays and CT scan of the injured area for a detailed view. Usually it is very difficult to differentiate a broken ankle from other conditions such as a sprain, dislocation, or tendon injury without having an X-ray of the injured ankle. In some cases, pressure is applied on the ankle and then special X-rays are taken. This procedure is called a stress test. This test is employed to check the stability of the fracture to decide if surgery is necessary or not. In complex cases, where detail evaluation of the ligaments is required an MRI scan is recommended.

Treatments

Immediately following an ankle injury and prior to seeing a doctor, you should apply ice packs and keep the foot elevated to minimize pain and swelling.

The treatment of ankle fracture depends upon the type and the stability of the fractured bone. Treatment starts with non-surgical methods, and in cases where the fracture is unstable and cannot be realigned, surgical methods are employed.

In non-surgical treatment, the ankle bone is realigned and special splints or a plaster cast is placed around the joint, for at least 2-3 weeks.

With surgical treatment, the fractured bone is accessed by making an incision over the ankle area and then specially designed plates are screwed onto the bone, to realign and stabilize the fractured parts. The incision is then sutured closed and the operated ankle is immobilized with a splint or cast.

Post-operative care

After ankle surgery, you will be instructed to avoid putting weight on the ankle by using crutches while walking for at least six weeks.

Physical therapy of the ankle joint will be recommended by the doctor. After 2-3 months of therapy, the patient may be able to perform their normal daily activities.

Risks and complications

Risks and complications that can occur with ankle fractures include improper casting or improper alignment of the bones which can cause deformities and eventually arthritis. In some cases, pressure exerted on the nerves can cause nerve damage, resulting in severe pain.

Rarely, surgery may result in incomplete healing of the fracture, which requires another surgery to repair.

Heel Fractures

The calcaneus or heel bone is a large bone found on the rear part of the foot. The calcaneus connects with the talus and cuboid bones to form the subtalar joint of the foot. A fracture is a break in a bone from trauma or various disease conditions. The types of fracture to the calcaneus depend on the severity and include stable fractures, displaced fractures, open fractures, closed fractures and comminuted fractures.

A fracture of the calcaneus is most commonly due to a traumatic event such as falling from a height, twisting injury, motor accidents, sports injuries and ankle sprain.

Fracture of the calcaneus is considered serious and can cause longstanding problems if not treated correctly. Stiffness and pain in the joint and arthritis are commonly reported risks of a calcaneal fracture.

The commonly seen signs and symptoms of calcaneal fractures are

  • Pain in the heel
  • Swelling in the heel
  • Bruises in the heel
  • Inability to walk or bear weight on the foot

The evaluation of the calcaneal fracture is done by imaging i.e., X-ray and CT scan. Based on the severity of the fracture, the doctor recommends the plan of treatment.

Calcaneal fractures are treated based on the type of fracture and extent of soft tissue damage.

  • Nonsurgical treatment
    • Rest, ice, compression, and elevation (R.I.C.E.): is the most commonly used treatment option. Staying off (resting) the injured foot can heal the fracture to a great extent. Covering the affected area with ice packs over a towel reduces swelling and pain. Compression stockings and elastic bandages can also aid in healing the pain. Positioning the feet above the level of heart reduces swelling.
    • Immobilization: Casting the injured foot prevents the fractured bone from moving. Walking with the help of crutches is advisable to avoid bearing body weight until healing has occurred.
  • Surgical treatment
    • Open reduction and internal fixation: This surgery involves putting the bone fragments back together with metal plates and screws to reposition them and set them to normal alignment.
    • Percutaneous screw fixation: This is the best preferred treatment in cases where the bone pieces are large. The bone can either be pushed or pulled to set into place without making a large incision. Metal screws are then inserted and fixed through small incisions to hold the bone pieces together.

Rehabilitation

Irrespective of the treatment procedure, the patient is recommended to undergo physiotherapy and practice simple exercises regularly to help restore function. This would help the muscles to gain flexibility and after complete recovery, the patient can resume their daily living with normal activities.

Lisfranc (Midfoot) Fracture

Tarsometatarsal joint refers to the region found in the middle of the foot. It is also called as Lisfranc joints. It is a junction between the tarsal bones (group of seven articulating bones in the foot) and metatarsal bones (a group of five long bones in the foot). A deformity in the tarsometatarsal region can be due to arthritis and traumatic motor accidents.

Tarsometatarsal arthritis is characterized by pain, functional impairment and midfoot instability. The appearance of bruises and swelling on the dorsal side of the midfoot are the commonly observed symptoms. The doctor will first examine the physical condition of the foot by inspection and palpation (feeling with hands). You may be advised to get an X-ray taken. You might also be sent to get a CT or MRI scan done to provide more information about your condition.

The early stages of injury can be treated by analgesics, steroid injections and by wearing special footwear or casts. Tarsometatarsal joint fusion is recommended if all the non-surgical procedures fail to show efficacy in treating the injury.

Stress Fractures of the Foot & Ankle

A stress fracture is described as a small crack in the bone which occurs from an overuse injury of a bone. It commonly develops in the weight bearing bones of the lower leg and foot. When the muscles of the foot are overworked or stressed, they are unable to absorb the stress and when this happens the muscles transfer the stress to the bone which results in stress fracture.

Stress fractures are caused by a rapid increase in the intensity of exercise. They can also be caused by impact on a hard surface, improper footwear, and increased physical activity. Athletes participating in certain sports such as basketball, tennis or gymnastics are at a greater risk of developing stress fractures. During these sports the repetitive stress of the foot strike on a hard surface causing trauma and muscle fatigue. An athlete with inadequate rest between workouts can also develop stress fracture.

Females are at a greater risk of developing stress fracture than males, and may be related to a condition referred to as “female athlete triad”. It is a combination of eating disorders, amenorrhea (irregular menstrual cycle), and osteoporosis (thinning of the bones). The risk of developing stress fracture increases in females if the bone weight decreases.

The most common symptom is pain in the foot which usually gets worse during exercises and decreases upon resting. Swelling, bruising, and tenderness may also occur at a specific point.

Your doctor will diagnosis the condition after discussing symptoms and risk factors and examines the foot and ankle. Some of the diagnostic tests such as X-ray, MRI scan or bone scan may be required to confirm the fracture.

Treatment

Stress fractures can be treated by non-surgical approach which includes rest and limiting the physical activities that involves foot and ankle. If children return too quickly to the activity that has caused stress fracture, it may lead to chronic problems such as harder-to-heal stress fractures. Re-injury can also occur without allowing the stress fracture to completely heal.

Protective footwear may be recommended which helps to reduce stress on the foot. Your doctor may apply cast to the foot to immobilize the leg which also helps to remove the stress. Crutches may be used to prevent the weight of the foot until the stress fracture is healed completely.

Surgery may be required if the fracture is not healed completely by non-surgical treatment. Your doctor makes an incision on the foot and uses internal fixators such as wires, pins, or plates to attach the broken bones of the foot together until healing happens after which these fixators can be removed or may be permanently left inside the body.

Some of the following measures may help to prevent stress fractures:

  • Ensure to start any new sport activity slowly and progress gradually
  • Cross-training: You may use more than one exercise with the same intention to prevent injury. For example you may run on even days and ride a bike on odd days, instead of running every day to reduce the risk of injury from overuse. This limits the stress occurring on specific muscles as different activities use muscles in different ways.
  • Ensure to maintain a healthy diet and include calcium and vitamin D-rich foods in your diet
  • Ensure that your child uses proper footwear or shoes for any sports activity and avoid using old or worn out shoes
  • If your child complains of pain and swelling then immediately stop the activities and make sure that your child rests for few days

Talus Fractures

The talus is a small bone at the ankle joint that connects the heel bone and the two bones of the lower leg, enabling the up and down movement of the foot. Fractures in the talus bone may occur due to a fall from great heights, motor vehicle accidents or twisting of the ankle. The symptoms include severe ankle pain, inability to walk, swelling and tenderness.

When you present to the clinic with these symptoms, your doctor will perform a thorough physical examination and order an X-ray or CT-scan to diagnose the location and severity of the fracture. Talus fractures are treated by either non-surgical or surgical methods.

Non-surgical treatment: If the bone has not moved out of alignment, your doctor will place your ankle in a cast for 6 to 8 weeks. You will be advised to perform exercises to help strengthen your foot and ankle and restore range of motion once the cast is removed.

Surgical treatment: Your surgeon realigns the fractured bone and stabilizes it with metal plates and/or screws. Small bone fragments may be removed and replaced with bone graft. After surgery, you may have to wear a cast for 6 to 8 weeks until complete healing. Physical therapy exercises will be initiated to restore movement.

Toe and Forefoot Fractures

The forefoot is the front of the foot that includes the toes. Fractures occurring in this part of the foot are painful but very often not disabling. There are 2 types of fractures namely, traumatic fracture and stress fracture. Traumatic fractures occur when there is a direct impact of your foot on a hard surface. Stress fractures are tiny hair line cracks in the bone, most commonly caused due to repeated stress. The symptoms of toe and forefoot fractures include pain, bruising, swelling and inability to walk.

To detect toe and forefoot fractures, your doctor conducts a physical examination of the foot, and may order X-ray’s to identify the location and severity of the fracture. Toe and forefoot fractures can be treated by the following ways:

  • Rest: Adequate amount of rest can sometimes help heal a traumatic fracture.
  • Splinting: Splints may be applied to keep the toe in a fixed position.
  • Rigid shoe: A stiff-soled shoe may be recommended to protect the toe and position it correctly.
  • Buddy taping: The fractured toe is taped to the adjacent toe with a gauze pad between the toes.
  • Surgery: Your doctor realigns the fractured bones using pins or screws to hold the bones together in place until they heal completely.

  • City Orthopaedics
  • MDDUS
  • General Medical Council